Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 41
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Adv ; 10(6): eadg8816, 2024 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-38335295

RESUMO

To achieve a highly differentiated state, cells undergo multiple transcriptional processes whose coordination and timing are not well understood. In Drosophila embryonic epidermal cells, polished-rice (Pri) smORF peptides act as temporal mediators of ecdysone to activate a transcriptional program leading to cell shape remodeling. Here, we show that the ecdysone/Pri axis concomitantly represses the transcription of a large subset of cuticle genes to ensure proper differentiation of the insect exoskeleton. The repression relies on the transcription factor Ken and persists for several days throughout early larval stages, during which a soft cuticle allows larval crawling. The onset of these cuticle genes normally awaits the end of larval stages when the rigid pupal case assembles, and their premature expression triggers abnormal sclerotization of the larval cuticle. These results uncovered a temporal switch to set up distinct structures of cuticles adapted to the animal lifestyle and which might be involved in the evolutionary history of insects.


Assuntos
Proteínas de Drosophila , Ecdisona , Animais , Ecdisona/metabolismo , Drosophila/genética , Drosophila/metabolismo , Diferenciação Celular/genética , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Peptídeos/metabolismo , Larva/genética , Insetos/genética , Regulação da Expressão Gênica no Desenvolvimento , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo
2.
iScience ; 27(1): 108624, 2024 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-38174321

RESUMO

The transcription factor Shavenbaby (Svb), the only member of the OvoL family in Drosophila, controls the fate of various epithelial embryonic cells and adult stem cells. Post-translational modification of Svb produces two protein isoforms, Svb-ACT and Svb-REP, which promote adult intestinal stem cell renewal or differentiation, respectively. To define Svb mode of action, we used engineered cell lines and develop an unbiased method to identify Svb target genes across different contexts. Within a given cell type, Svb-ACT and Svb-REP antagonistically regulate the expression of a set of target genes, binding specific enhancers whose accessibility is constrained by chromatin landscape. Reciprocally, Svb-REP can influence local chromatin marks of active enhancers to help repressing target genes. Along the intestinal lineage, the set of Svb target genes progressively changes, together with chromatin accessibility. We propose that Svb-ACT-to-REP transition promotes enterocyte differentiation of intestinal stem cells through direct gene regulation and chromatin remodeling.

3.
PLoS Genet ; 19(10): e1011004, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37903161

RESUMO

The last decade witnesses the emergence of the abundant family of smORF peptides, encoded by small ORF (<100 codons), whose biological functions remain largely unexplored. Bioinformatic analyses here identify hundreds of putative smORF peptides expressed in Drosophila imaginal leg discs. Thanks to a functional screen in leg, we found smORF peptides involved in morphogenesis, including the pioneer smORF peptides Pri. Since we identified its target Ubr3 in the epidermis and pri was known to control leg development through poorly understood mechanisms, we investigated the role of Ubr3 in mediating pri function in leg. We found that pri plays several roles during leg development both in patterning and in cell survival. During larval stage, pri activates independently of Ubr3 tarsal transcriptional programs and Notch and EGFR signaling pathways, whereas at larval pupal transition, Pri peptides cooperate with Ubr3 to insure cell survival and leg morphogenesis. Our results highlight Ubr3 dependent and independent functions of Pri peptides and their pleiotropy. Moreover, we reveal that the smORF peptide family is a reservoir of overlooked developmental regulators, displaying distinct molecular functions and orchestrating leg development.


Assuntos
Proteínas de Drosophila , Animais , Drosophila/metabolismo , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Peptídeos/genética , Transdução de Sinais/genética , Ubiquitina-Proteína Ligases/genética , Ubiquitina-Proteína Ligases/metabolismo
4.
Front Genet ; 12: 714152, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34527021

RESUMO

There is growing evidence that peptides encoded by small open-reading frames (sORF or smORF) can fulfill various cellular functions and define a novel class regulatory molecules. To which extend transcripts encoding only smORF peptides compare with canonical protein-coding genes, yet remain poorly understood. In particular, little is known on whether and how smORF-encoding RNAs might need tightly regulated expression within a given tissue, at a given time during development. We addressed these questions through the analysis of Drosophila polished rice (pri, a.k.a. tarsal less or mille pattes), which encodes four smORF peptides (11-32 amino acids in length) required at several stages of development. Previous work has shown that the expression of pri during epidermal development is regulated in the response to ecdysone, the major steroid hormone in insects. Here, we show that pri transcription is strongly upregulated by ecdysone across a large panel of cell types, suggesting that pri is a core component of ecdysone response. Although pri is produced as an intron-less short transcript (1.5 kb), genetic assays reveal that the developmental functions of pri require an unexpectedly large array of enhancers (spanning over 50 kb), driving a variety of spatiotemporal patterns of pri expression across developing tissues. Furthermore, we found that separate pri enhancers are directly activated by the ecdysone nuclear receptor (EcR) and display distinct regulatory modes between developmental tissues and/or stages. Alike major developmental genes, the expression of pri in a given tissue often involves several enhancers driving apparently redundant (or shadow) expression, while individual pri enhancers can harbor pleiotropic functions across tissues. Taken together, these data reveal the broad role of Pri smORF peptides in ecdysone signaling and show that the cis-regulatory architecture of the pri gene contributes to shape distinct spatial and temporal patterns of ecdysone response throughout development.

5.
EMBO J ; 40(4): e104347, 2021 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-33372708

RESUMO

Adult stem cells must continuously fine-tune their behavior to regenerate damaged organs and avoid tumors. While several signaling pathways are well known to regulate somatic stem cells, the underlying mechanisms remain largely unexplored. Here, we demonstrate a cell-intrinsic role for the OvoL family transcription factor, Shavenbaby (Svb), in balancing self-renewal and differentiation of Drosophila intestinal stem cells. We find that svb is a downstream target of Wnt and EGFR pathways, mediating their activity for stem cell survival and proliferation. This requires post-translational processing of Svb into a transcriptional activator, whose upregulation induces tumor-like stem cell hyperproliferation. In contrast, the unprocessed form of Svb acts as a repressor that imposes differentiation into enterocytes, and suppresses tumors induced by altered signaling. We show that the switch between Svb repressor and activator is triggered in response to systemic steroid hormone, which is produced by ovaries. Therefore, the Svb axis allows intrinsic integration of local signaling cues and inter-organ communication to adjust stem cell proliferation versus differentiation, suggesting a broad role of OvoL/Svb in adult and cancer stem cells.


Assuntos
Diferenciação Celular , Autorrenovação Celular , Proteínas de Ligação a DNA/metabolismo , Proteínas de Drosophila/metabolismo , Intestinos/fisiologia , Células-Tronco/citologia , Esteroides/farmacologia , Fatores de Transcrição/metabolismo , Animais , Proteínas de Ligação a DNA/genética , Drosophila , Proteínas de Drosophila/genética , Feminino , Regulação da Expressão Gênica no Desenvolvimento , Masculino , Células-Tronco/metabolismo , Fatores de Transcrição/genética
6.
Med Sci (Paris) ; 36 Hors série n° 1: 61-66, 2020 Oct.
Artigo em Francês | MEDLINE | ID: mdl-33052097

RESUMO

Most prevalent cancers are of epithelial origin and their morbidity often results from secondary tumors. Cancer aggressiveness relates to intratumoral heterogeneity, including rare tumor initiating cells that share many features with adult stem cells. Both normal and cancer stem cells are characterized by their plasticity between epithelial and mesenchymal phenotypes, progressing through a series of reversible intermediates. While a core of regulators (Snail, Zeb1-2,...) is renowned to promote epithelial to mesenchyme transition (EMT), OvoL/Shavenbaby factors now emerge as a family of key epithelial stabilizers. Therefore, pro-EMT and OvoL/Shavenbaby transcription factors could provide a molecular rheostat to control stemness and epithelial-mesenchyme plasticity. We address this question in flies, in which the unique OvoL/Shavenbaby factor offers a powerful in vivo paradigm for functional analyses. Our results show that Shavenbaby is critical for adult stem cell homeostasis, and directly interacts with the Hippo pathway to protect stem cells from death.


TITLE: Les facteurs OvoL - Des régulateurs clés de la plasticité épithélium-mésenchyme et des cellules souches. ABSTRACT: Des avancées majeures révèlent l'hétérogénéité intra-tumorale des cancers d'origine épithéliale, incluant des cellules initiatrices de tumeurs qui ressemblent aux cellules souches adultes. Les cellules souches normales et tumorales partagent en effet leur plasticité entre phénotypes épithéliaux et mésenchymateux, progressant par une série d'états intermédiaires, réversibles. Si un cœur de régulateurs (Snail, Zeb, …) est bien connu pour déclencher la transition épithélio-mésenchymateuse (TEM), les facteurs OvoL/Shavenbaby sont récemment apparus comme des stabilisateurs épithéliaux. La balance entre facteurs pro-TEM et OvoL pourrait ainsi réguler la plasticité phénotypique et le potentiel métastatique des tumeurs. Nous abordons cette question chez la drosophile, un modèle pour disséquer in vivo la fonction de Shavenbaby. Nos travaux montrent que Shavenbaby est un régulateur clé de l'homéostasie des cellules souches adultes. Shavenbaby est indispensable à leur survie, agissant en interaction directe avec la voie Hippo pour protéger les cellules souches de la mort cellulaire programmée.


Assuntos
Células-Tronco Adultas/fisiologia , Proteínas de Ligação a DNA/fisiologia , Transição Epitelial-Mesenquimal/genética , Células-Tronco Neoplásicas/fisiologia , Fatores de Transcrição/fisiologia , Células-Tronco Adultas/metabolismo , Animais , Plasticidade Celular/genética , Proteínas de Ligação a DNA/genética , Drosophila/genética , Proteínas de Drosophila/genética , Proteínas de Drosophila/fisiologia , Humanos , Família Multigênica/genética , Neoplasias/genética , Neoplasias/patologia , Células-Tronco Neoplásicas/metabolismo , Fatores de Transcrição/genética
7.
Elife ; 82019 03 21.
Artigo em Inglês | MEDLINE | ID: mdl-30896406

RESUMO

Small open reading frames (smORFs) encoding 'micropeptides' exhibit remarkable evolutionary complexity. Conserved peptides encoded by mille-pattes (mlpt)/polished rice (pri)/tarsal less (tal) are essential for embryo segmentation in Tribolium but, in Drosophila, function in terminal epidermal differentiation and patterning of adult legs. Here, we show that a molecular complex identified in Drosophila epidermal differentiation, comprising Mlpt peptides, ubiquitin-ligase Ubr3 and transcription factor Shavenbaby (Svb), represents an ancient developmental module required for early insect embryo patterning. We find that loss of segmentation function for this module in flies evolved concomitantly with restriction of Svb expression in early Drosophila embryos. Consistent with this observation, artificially restoring early Svb expression in flies causes segmentation defects that depend on mlpt function, demonstrating enduring potency of an ancestral developmental switch despite evolving embryonic patterning modes. These results highlight the evolutionary plasticity of conserved molecular complexes under the constraints of essential genetic networks. Editorial note: This article has been through an editorial process in which the authors decide how to respond to the issues raised during peer review. The Reviewing Editor's assessment is that all the issues have been addressed (see decision letter).


Assuntos
Padronização Corporal , Proteínas de Ligação a DNA/metabolismo , Proteínas de Drosophila/metabolismo , Drosophila/embriologia , Epiderme/embriologia , Regulação da Expressão Gênica no Desenvolvimento , Organogênese , Fatores de Transcrição/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Animais
8.
Nat Commun ; 9(1): 5123, 2018 11 30.
Artigo em Inglês | MEDLINE | ID: mdl-30504772

RESUMO

To compensate for accumulating damages and cell death, adult homeostasis (e.g., body fluids and secretion) requires organ regeneration, operated by long-lived stem cells. How stem cells can survive throughout the animal life remains poorly understood. Here we show that the transcription factor Shavenbaby (Svb, OvoL in vertebrates) is expressed in renal/nephric stem cells (RNSCs) of Drosophila and required for their maintenance during adulthood. As recently shown in embryos, Svb function in adult RNSCs further needs a post-translational processing mediated by the Polished rice (Pri) smORF peptides and impairing Svb function leads to RNSC apoptosis. We show that Svb interacts both genetically and physically with Yorkie (YAP/TAZ in vertebrates), a nuclear effector of the Hippo pathway, to activate the expression of the inhibitor of apoptosis DIAP1. These data therefore identify Svb as a nuclear effector in the Hippo pathway, critical for the survival of adult somatic stem cells.


Assuntos
Células-Tronco Adultas/metabolismo , Proteínas de Ligação a DNA/metabolismo , Proteínas de Drosophila/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Proteínas Nucleares/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Transativadores/metabolismo , Fatores de Transcrição/metabolismo , Animais , Apoptose/genética , Apoptose/fisiologia , Proteínas de Ligação a DNA/genética , Drosophila , Proteínas de Drosophila/genética , Marcação In Situ das Extremidades Cortadas , Peptídeos e Proteínas de Sinalização Intracelular/genética , Proteínas Nucleares/genética , Proteínas Serina-Treonina Quinases/genética , Transdução de Sinais/genética , Transdução de Sinais/fisiologia , Transativadores/genética , Fatores de Transcrição/genética , Proteínas de Sinalização YAP
9.
Dev Cell ; 44(5): 611-623.e7, 2018 03 12.
Artigo em Inglês | MEDLINE | ID: mdl-29478922

RESUMO

A key feature of Notch signaling is that it directs immediate changes in transcription via the DNA-binding factor CSL, switching it from repression to activation. How Notch generates both a sensitive and accurate response-in the absence of any amplification step-remains to be elucidated. To address this question, we developed real-time analysis of CSL dynamics including single-molecule tracking in vivo. In Notch-OFF nuclei, a small proportion of CSL molecules transiently binds DNA, while in Notch-ON conditions CSL recruitment increases dramatically at target loci, where complexes have longer dwell times conferred by the Notch co-activator Mastermind. Surprisingly, recruitment of CSL-related corepressors also increases in Notch-ON conditions, revealing that Notch induces cooperative or "assisted" loading by promoting local increase in chromatin accessibility. Thus, in vivo Notch activity triggers changes in CSL dwell times and chromatin accessibility, which we propose confer sensitivity to small input changes and facilitate timely shut-down.


Assuntos
Núcleo Celular/genética , Proteínas de Ligação a DNA/metabolismo , DNA/metabolismo , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/metabolismo , Receptores Notch/metabolismo , Animais , Núcleo Celular/metabolismo , DNA/genética , Proteínas de Ligação a DNA/genética , Proteínas de Drosophila/genética , Drosophila melanogaster/genética , Drosophila melanogaster/crescimento & desenvolvimento , Modelos Moleculares , Ligação Proteica , Receptores Notch/genética , Transdução de Sinais , Ativação Transcricional
10.
Sci Rep ; 7(1): 16778, 2017 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-29196707

RESUMO

The Crumbs (Crb) complex is a key epithelial determinant. To understand its role in morphogenesis, we examined its function in the Drosophila pupal wing, an epithelium undergoing hexagonal packing and formation of planar-oriented hairs. Crb distribution is dynamic, being stabilized to the subapical region just before hair formation. Lack of crb or stardust, but not DPatj, affects hexagonal packing and delays hair formation, without impairing epithelial polarities but with increased fluctuations in cell junctions and perimeter length, fragmentation of adherens junctions and the actomyosin cytoskeleton. Crb interacts with Moesin and Yurt, FERM proteins regulating the actomyosin network. We found that Moesin and Yurt distribution at the subapical region depends on Crb. In contrast to previous reports, yurt, but not moesin, mutants phenocopy crb junctional defects. Moreover, while unaffected in crb mutants, cell perimeter increases in yurt mutant cells and decreases in the absence of moesin function. Our data suggest that Crb coordinates proper hexagonal packing and hair formation, by modulating junction integrity via Yurt and stabilizing cell perimeter via both Yurt and Moesin. The Drosophila pupal wing thus appears as a useful system to investigate the functional diversification of the Crb complex during morphogenesis, independently of its role in polarity.


Assuntos
Junções Aderentes/química , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/crescimento & desenvolvimento , Proteínas de Membrana/metabolismo , Asas de Animais/crescimento & desenvolvimento , Actomiosina/química , Junções Aderentes/metabolismo , Animais , Caderinas/química , Polaridade Celular , Proteínas de Drosophila/química , Proteínas de Drosophila/genética , Drosophila melanogaster/genética , Drosophila melanogaster/metabolismo , Epitélio/crescimento & desenvolvimento , Epitélio/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Proteínas de Membrana/genética , Morfogênese , Mutação , Estabilidade Proteica , Pupa/genética , Pupa/crescimento & desenvolvimento , Pupa/metabolismo , Distribuição Tecidual , Asas de Animais/metabolismo
11.
Annu Rev Cell Dev Biol ; 33: 391-416, 2017 10 06.
Artigo em Inglês | MEDLINE | ID: mdl-28759257

RESUMO

A large body of evidence indicates that genome annotation pipelines have biased our view of coding sequences because they generally undersample small proteins and peptides. The recent development of genome-wide translation profiling reveals the prevalence of small/short open reading frames (smORFs or sORFs), which are scattered over all classes of transcripts, including both mRNAs and presumptive long noncoding RNAs. Proteomic approaches further confirm an unexpected variety of smORF-encoded peptides (SEPs), representing an overlooked reservoir of bioactive molecules. Indeed, functional studies in a broad range of species from yeast to humans demonstrate that SEPs can harbor key activities for the control of development, differentiation, and physiology. Here we summarize recent advances in the discovery and functional characterization of smORF/SEPs and discuss why these small players can no longer be ignored with regard to genome function.


Assuntos
Peptídeos/metabolismo , Animais , Genoma , Humanos , Fases de Leitura Aberta/genética , Biossíntese de Proteínas , RNA não Traduzido/genética
13.
Cell ; 160(1-2): 191-203, 2015 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-25557079

RESUMO

In animals, Hox transcription factors define regional identity in distinct anatomical domains. How Hox genes encode this specificity is a paradox, because different Hox proteins bind with high affinity in vitro to similar DNA sequences. Here, we demonstrate that the Hox protein Ultrabithorax (Ubx) in complex with its cofactor Extradenticle (Exd) bound specifically to clusters of very low affinity sites in enhancers of the shavenbaby gene of Drosophila. These low affinity sites conferred specificity for Ubx binding in vivo, but multiple clustered sites were required for robust expression when embryos developed in variable environments. Although most individual Ubx binding sites are not evolutionarily conserved, the overall enhancer architecture-clusters of low affinity binding sites-is maintained and required for enhancer function. Natural selection therefore works at the level of the enhancer, requiring a particular density of low affinity Ubx sites to confer both specific and robust expression.


Assuntos
Proteínas de Ligação a DNA/genética , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/metabolismo , Elementos Facilitadores Genéticos , Proteínas de Homeodomínio/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Animais , Sequência de Bases , Drosophila melanogaster/genética , Embrião não Mamífero/metabolismo , Regulação da Expressão Gênica , Dados de Sequência Molecular , Ligação Proteica , Alinhamento de Sequência
14.
Nat Cell Biol ; 16(11): 1035-44, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25344753

RESUMO

Animal development fundamentally relies on the precise control, in space and time, of genome expression. Whereas we have a wealth of information about spatial patterning, the mechanisms underlying temporal control remain poorly understood. Here we show that Pri peptides, encoded by small open reading frames, are direct mediators of the steroid hormone ecdysone for the timing of developmental programs in Drosophila. We identify a previously uncharacterized enzyme of ecdysone biosynthesis, GstE14, and find that ecdysone triggers pri expression to define the onset of epidermal trichome development, through post-translational control of the Shavenbaby transcription factor. We show that manipulating pri expression is sufficient to either put on hold or induce premature differentiation of trichomes. Furthermore, we find that ecdysone-dependent regulation of pri is not restricted to epidermis and occurs over various tissues and times. Together, these findings provide a molecular framework to explain how systemic hormonal control coordinates specific programs of differentiation with developmental timing.


Assuntos
Arrestinas/metabolismo , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/metabolismo , Ecdisona/metabolismo , Regulação da Expressão Gênica no Desenvolvimento/fisiologia , Glutationa Transferase/metabolismo , Receptores de Esteroides/metabolismo , Animais , Arrestinas/genética , Diferenciação Celular/genética , Proteínas de Drosophila/genética , Ecdisona/genética , Glutationa Transferase/genética , Mutação/genética , Receptores de Esteroides/genética , Transdução de Sinais/fisiologia , Transaldolase/genética , Transaldolase/metabolismo
15.
Elife ; 3: e01440, 2014 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-24599282

RESUMO

Embryonic anterior-posterior patterning is well understood in Drosophila, which uses 'long germ' embryogenesis, in which all segments are patterned before cellularization. In contrast, most insects use 'short germ' embryogenesis, wherein only head and thorax are patterned in a syncytial environment while the remainder of the embryo is generated after cellularization. We use the wasp Nasonia (Nv) to address how the transition from short to long germ embryogenesis occurred. Maternal and gap gene expression in Nasonia suggest long germ embryogenesis. However, the Nasonia pair-rule genes even-skipped, odd-skipped, runt and hairy are all expressed as early blastoderm pair-rule stripes and late-forming posterior stripes. Knockdown of Nv eve, odd or h causes loss of alternate segments at the anterior and complete loss of abdominal segments. We propose that Nasonia uses a mixed mode of segmentation wherein pair-rule genes pattern the embryo in a manner resembling Drosophila at the anterior and ancestral Tribolium at the posterior. DOI: http://dx.doi.org/10.7554/eLife.01440.001.


Assuntos
Regulação da Expressão Gênica no Desenvolvimento , Redes Reguladoras de Genes , Proteínas de Insetos/genética , Vespas/genética , Animais , Padronização Corporal , Embrião não Mamífero/metabolismo , Desenvolvimento Embrionário , Evolução Molecular , Proteínas de Insetos/metabolismo , Filogenia , Vespas/embriologia , Vespas/metabolismo
16.
Genome Biol ; 14(8): R86, 2013 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-23972280

RESUMO

BACKGROUND: Developmental programs are implemented by regulatory interactions between Transcription Factors (TFs) and their target genes, which remain poorly understood. While recent studies have focused on regulatory cascades of TFs that govern early development, little is known about how the ultimate effectors of cell differentiation are selected and controlled. We addressed this question during late Drosophila embryogenesis, when the finely tuned expression of the TF Ovo/Shavenbaby (Svb) triggers the morphological differentiation of epidermal trichomes. RESULTS: We defined a sizeable set of genes downstream of Svb and used in vivo assays to delineate 14 enhancers driving their specific expression in trichome cells. Coupling computational modeling to functional dissection, we investigated the regulatory logic of these enhancers. Extending the repertoire of epidermal effectors using genome-wide approaches showed that the regulatory models learned from this first sample are representative of the whole set of trichome enhancers. These enhancers harbor remarkable features with respect to their functional architectures, including a weak or non-existent clustering of Svb binding sites. The in vivo function of each site relies on its intimate context, notably the flanking nucleotides. Two additional cis-regulatory motifs, present in a broad diversity of composition and positioning among trichome enhancers, critically contribute to enhancer activity. CONCLUSIONS: Our results show that Svb directly regulates a large set of terminal effectors of the remodeling of epidermal cells. Further, these data reveal that trichome formation is underpinned by unexpectedly diverse modes of regulation, providing fresh insights into the functional architecture of enhancers governing a terminal differentiation program.


Assuntos
Proteínas de Ligação a DNA/genética , Proteínas de Drosophila/genética , Drosophila melanogaster/genética , Elementos Facilitadores Genéticos , Regulação da Expressão Gênica no Desenvolvimento , Genoma , Fatores de Transcrição/genética , Tricomas/genética , Animais , Sítios de Ligação , Biologia Computacional , Proteínas de Ligação a DNA/metabolismo , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/crescimento & desenvolvimento , Drosophila melanogaster/metabolismo , Embrião não Mamífero , Anotação de Sequência Molecular , Dados de Sequência Molecular , Motivos de Nucleotídeos , Ligação Proteica , Fatores de Transcrição/metabolismo , Tricomas/crescimento & desenvolvimento , Tricomas/metabolismo
17.
Semin Cell Dev Biol ; 23(3): 341-9, 2012 May.
Artigo em Inglês | MEDLINE | ID: mdl-22406682

RESUMO

One of the most challenging problems in biology resides in unraveling the molecular mechanisms, hardwired in the genome, that define and regulate the multiscale tridimensional organization of organs, tissues and individual cells. While works in cultured cells have revealed the importance of cytoskeletal networks for cell architecture, in vivo models are now required to explore how such a variety in cell shape is produced during development, in interaction with neighboring cells and tissues. The genetic analysis of epidermis development in Drosophila has provided an unbiased way to identify mechanisms remodeling the shape of epidermal cells, to form apical trichomes during terminal differentiation. Since hearing in vertebrates relies on apical cell extensions in sensory cells of the cochlea, called stereocilia, the mapping of human genes causing hereditary deafness has independently identified several factors required for this peculiar tridimensional organization. In this review, we summarized recent results obtained toward the identification of genes involved in these localized changes in cell shape and discuss their evolution throughout developmental processes and species.


Assuntos
Evolução Biológica , Forma Celular/fisiologia , Cóclea/citologia , Células Epidérmicas , Animais , Comunicação Celular , Diferenciação Celular , Drosophila melanogaster/citologia , Drosophila melanogaster/embriologia , Epiderme/embriologia , Humanos
19.
J Cell Biol ; 195(1): 99-112, 2011 Oct 03.
Artigo em Inglês | MEDLINE | ID: mdl-21969469

RESUMO

The cortical mechanisms that drive the series of mitotic cell shape transformations remain elusive. In this paper, we identify two novel networks that collectively control the dynamic reorganization of the mitotic cortex. We demonstrate that Moesin, an actin/membrane linker, integrates these two networks to synergize the cortical forces that drive mitotic cell shape transformations. We find that the Pp1-87B phosphatase restricts high Moesin activity to early mitosis and down-regulates Moesin at the polar cortex, after anaphase onset. Overactivation of Moesin at the polar cortex impairs cell elongation and thus cytokinesis, whereas a transient recruitment of Moesin is required to retract polar blebs that allow cortical relaxation and dissipation of intracellular pressure. This fine balance of Moesin activity is further adjusted by Skittles and Pten, two enzymes that locally produce phosphoinositol 4,5-bisphosphate and thereby, regulate Moesin cortical association. These complementary pathways provide a spatiotemporal framework to explain how the cell cortex is remodeled throughout cell division.


Assuntos
Anáfase/fisiologia , Forma Celular/fisiologia , Citocinese/fisiologia , Proteínas de Membrana/metabolismo , Animais , Linhagem Celular , Regulação para Baixo/fisiologia , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Drosophila melanogaster , Proteínas de Membrana/genética , PTEN Fosfo-Hidrolase/genética , PTEN Fosfo-Hidrolase/metabolismo , Fosfatidilinositol 4,5-Difosfato/genética , Fosfatidilinositol 4,5-Difosfato/metabolismo , Fosfoproteínas Fosfatases/genética
20.
Nature ; 474(7353): 598-603, 2011 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-21720363

RESUMO

Morphology evolves often through changes in developmental genes, but the causal mutations, and their effects, remain largely unknown. The evolution of naked cuticle on larvae of Drosophila sechellia resulted from changes in five transcriptional enhancers of shavenbaby (svb), a transcript of the ovo locus that encodes a transcription factor that governs morphogenesis of microtrichiae, hereafter called 'trichomes'. Here we show that the function of one of these enhancers evolved through multiple single-nucleotide substitutions that altered both the timing and level of svb expression. The consequences of these nucleotide substitutions on larval morphology were quantified with a novel functional assay. We found that each substitution had a relatively small phenotypic effect, and that many nucleotide changes account for this large morphological difference. In addition, we observed that the substitutions had non-additive effects. These data provide unprecedented resolution of the phenotypic effects of substitutions and show how individual nucleotide changes in a transcriptional enhancer have caused morphological evolution.


Assuntos
Evolução Biológica , Drosophila/anatomia & histologia , Drosophila/genética , Elementos Facilitadores Genéticos/genética , Regulação da Expressão Gênica no Desenvolvimento , Animais , Sequência de Bases , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Drosophila/embriologia , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/anatomia & histologia , Drosophila melanogaster/embriologia , Drosophila melanogaster/genética , Embrião não Mamífero , Feminino , Larva , Masculino , Fenótipo , Alinhamento de Sequência , Homologia de Sequência do Ácido Nucleico , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...